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Abstract: A new one-step procedure for the synthesis of monoalkylated calix[4]arenes is 

presented. Reaction of calix[l]arene la or lb with 1.2 equivalent of a weak base (K$O, in 

MeCN or CsF in DMF) and excess of alkylaring agent affords the nwnoalkylated calix[4/arenes 

in moderate to good yields. 

Calix[4]arenes (1) are versatile building blocks for molecules with different properties.’ The increasing 

interest in these molecules is stimulated by the simple large-scale synthesis of the calix[4]arenes, and the 

different ways in which they can be functionalized selectively. General procedures have been developed for 

the syn-1,3-dialkylation2 of the phenolic oxygen atoms (at the lower rim) and the 1.3-difunctionalization at 

the upper rim,3 the syn-1,2-dialkylation at the lower rim,4 and the syn-trialkylation at the lower rim5 of 

calix[4]arenes. Examples of both and-1,2- and anti-1,3-dialkylated calix[4]arene&’ and of the two other 

isomers of trialkylated calix[4]arenes7 have been published. All of them are obtained in reasonable yield in 

one- to three-step procedures that seem generally applicable. Until very recently only a few monoalkylated 

calix[4]arenes were known. They were obtained in low yield either via direct substitution8s9 or via a three-step 

synthesis.‘0 Recently, several monoalkyl ethers of calix[4]arenes, obtained via selective dealkylation of 

syn-1,3-di- or tetraalkylated calix[4]arenes, have been reported. l1 Direct monoalkylation of p-rert-butyl- 

calix[4]arene lb with NaH as a base and 1 equiv of alkylating agent has been reported, but this reaction gives 

considerable amounts of disubstituted calix[4]arene as a byproduct.5*7 In this paper we report a general 

one-step method for the monoalkylation of calix[4]arenes. 
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A 0.6 equiv K&O, 

excess R,X 

MeCN, reflux 

R 
B 1.2 equiv CsF 

excess R, X 

DMF. 40 ‘C 
R 

1 2 RI= Me 

3 Rl=Et 
4 R1 = ally1 

5 R1 = CH,COOEt 

Scheme 1. 

pK, Measurements of calix[4]arenes have revealed that one proton is very acidic (a so-called 

super-acidic proton) and that a considerable gap exists between the pK, values for the fist and the second 

deprotonation step, which varies from 1.5 to 8.0 for different calix[4]arenes. l2 Therefore it is expected that 

the first deprotonation and alkylation step can be accomplished selectively if a weak base is used. Indeed, 

when calix[4]arene la or lb is treated with 0.6 equiv of K,COs and excess of alkylating agent in refluxing 

acetonitrile (MeCN) (Method A), the monoalkylated calix[4]arenes are obtained in reasonable to good yields 

(Scheme 1, Table 1). However, in most of these reactions some syn-1,3-dialkylated calix[4]arene is still 

formed. When the reaction is carried out with 1.2 equiv of CsFt3 in dimethylformamide (DMF) at 40 OC 

(Method B) the monoalkylated calix[4]arenes are obtained in higher yields than in the K2CO3 reactions and 

with less of the syn-1,3_dialkylated calix[4]arenes as byproducts. 

It seems strange that despite the considerable pK, difference between the first and the second 

deprotonation step it is so difficult to obtain selectively the monoalkylated calix[4]arenes. However, in a 

recent publication, the pK, values of p-tert-butylcalix[4]arene (lb) and its methyl ethers are estimated, and 

the results show that the pK, values of lb and its monomethyl ether are of comparable magnitude, but that the 

pK, values of the 1,3-di- and the trimethyl ether are > 5 pK, units higher.’ The monodeprotonation of a 

calix[4]arene is very easy because of the efficient stabilization of the monoanion by two hydrogen bonds from 

the neighboring phenol units. The second deprotonation is more difficult because the proton has to be 

abstracted from a negatively charged species and because in the resulting dianion every oxyanion can be 

stabilized by only one hydrogen bond. This shows in the gap between the pK, values for the first and second 

deprotonation step of calix[4]arenes. When a proton is abstracted (at the diametrical position) from the 

uncharged monoalkyl ether the resulting anion will be stabilized by two hydrogen bonds, just like the 

calix[4]arene monoanion. Therefore, the pK, values for a calix[4]arene and its monoalkyl ether are expected 

to be of comparable magnitude and this explains why even a weak base like KzC03 (and KHCOs that is 
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Table 1. Yields of Monoalkylated Calix[4]arenes. 

Compound Method Base Solvent Temperature (“C) Time (h) Yield (%) 

2a A 
2a B 
2b A 
3a A 
3b A 
3b B 
4a A 
4a B 
4b A 

5b A 
5b B 

K2c03 

CsF 

K2c03 

K2C03 

K2c03 
CsF 

K2C03 

CsF 

K2C03 

K2c03 

CsF 

MeCN 
DMF 
MeCN 
MeCN 
MeCN 
DMF 
MeCN 
DMF 
MeCN 
MeCN 

DMF 

reflux 50 58 
40 48 60 
reflux 26 67 
reflux 16 88 
reflux 18 44 
40 16 65 
reflux 16 37 
40 40 85 
reflux 17 47 
reflux 24 61 

40 16 75 

formed during the reaction) cannot completely discriminate between the first and the second deprotonation 

step (i.e., deprotonation of the unsubstituted and of the monoalkylated calix[4]arene. respectively). The 

strength of the base F is not exactly known. However, it is generally considered to form a very strong 

hydrogen bond with an acidic proton rather than affecting complete deprotonation.13 Our results seem to 

indicate that this makes a difference for the relative reactivities of the unsubstituted and the monoalkylated 

calix[4]arenes. 

Deprotonation of a 13-dialkylated calix[4]arene will be. relatively difficult. because the resulting 

oxyanion cannot be stabilized by a hydrogen bond, or only by a fairly weak one from the diametrical OH 

group. This explains why the alkylation of calix[4]arenes is so easily stopped at the 1,3-dialkylated stage. 

The procedure presented for the monoalkylation of calix[4]arenes gives yields that are comparable to 

those obtained via the two-step procedure published earlier. t1 Its advantages are that only one reaction step is 

involved and that a wider range of alkylating agents can be used, including the ester reagents that lead to 

compound Sb and analogous compounds. 

EXPERIMENTAL 

Melting points are uncorrected. ‘H and 13C NMR spectra were recorded in CDC13 with Me$i as an 

internal standard. All chemicals were reagent grade and used without further purification. Compounds lal” 

and lb14 were prepared according to the literature. Acetonitrile was dried over molecular sieves (3 A). 
Dimethylfomramide (DMF) was distilled and kept over molecular sieves (4 A). Dichloromethane and 

chloroform were distilled before use. Petroleum ether refers to the fraction boiling at 40-60 OC and was 

distilled before use. Chromatographic separations were performed on silica gel 60 (Si02, E. Merck, particle 

size 0.040-0.063 mm, 230-400 mesh). The presence of CH2C12 or CHCls in the analytical samples was 

confirmed by ‘H NMR spectra of the samples in CDCl3 or CD2C12, respectively. 
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General procedures for monoalkylation of calix[4]arenes. 

Method A. A suspension of calix[4]arene la (0.15 g, 0.35 mmol) or p-rert-butylcalix[4]arene lb 

(toluene complex, 0.25 g, 0.38 mmol). and K&OS (0.03 g. 0.20 mmol) in acetonitrile (10 mL) was stirred at 

reflux temperature for 0.5 h. The alkylating agent (3.5 mmol) was added and the reaction mixture was stirred 

for 16-50 h. After cooling the solvent was removed under reduced pressure. The remaining solid was taken up 

in CH& (50 mL) and washed with 1 N HCl (2 x 50 mL) and water (50 mL). The organic layer was dried 

over MgS04 and evaporated to give a crude product. This contained in most cases some syn-1,3-disubstituted 

calix[4]arene as well as unsubstituted calix[4]arene. The latter was for a large part removed by taking up the 

crude product iri ethyl acetate and filtering off the unsubstituted calix[4]arene. After evaporation of the 

solvent the product was purified by column chromatography. 

Method B. To a solution of CsF (0.18 g, 1.2 mmol) in dry DMF (20 mL) were added calix[4]arene la or 

p-te+butylcalix[4]arene lb (toluene complex) (1 mmol), and the alkylating agent (10 mmol). The reaction 

mixture was stirred at 40 OC for 16-48 h. The progress of the reaction was followed by TLC and after 

completion the reaction was quenched with 2 N HCI (40 mL). The reaction mixture was extracted with 

CH,Cl, (2 x 20 mL). The combined organic layers were washed with water (2 x 25 mL) and dried with 

MgS04. After evaporation of the solvent the remaining crude product was taken up in CH$XJMeOH (1 : 1). 

This solution was filtered (to remove unreacted calix[4larene), after which it was left standing so that the 

product could crystallize. 

As alkylating agents the bromides were used, except for R, = Et, Me for which the iodides were used. 

Reaction times and yields for all reactions are given in Table 1. 

2&Methoxycalix[4]arene (2a). Method A, eluent CH$&/petroleum ether 3 : 1; mp 276-277 OC (lit.*’ 

276-277 OC (CHClfleOH)). 

Method B, purification by column chromatography (CH&/hexane 1 : 1); mp 275-276 OC. 

28-Methoxy-p-lerf-butylcalix[4]arene (2b). Method A, eluent CHzCl,/petroleum ether 3 : 1; mp 

206-208 “C (lit.” 203-204 OC (CHClJMeOH)). 

2fLEthoxycalix[4larene (3a). Method A. eluent CH&lz/petroleum ether 1 : 1; mp 295-298 Y!; ‘H 

NMR 6 9.79 (s, 1 H, OH), 9.42 (s, 2 H, OH), 7.15-7.0 (m, 8 H, m-ArH), 6.91 (t, 1 H, J = 7.5 Hz, p-ArH), 

6.75-6.65 (m, 3 H, p-ArH), 4.45, 4.31 (d, 2 H, J = 13.4 Hz, ArCHzAr ax), 4.23 (q, 2 H, J = 7.5 HZ, OCH$, 

3.45 (d, 4 H, J = 13.4 Hz, ArCHzAr eq), 1.75 (t. 3 H, J = 7.5 Hz, CH,); 13C NMR 6 151.1 (s, ArC-OR,), 

150.5, 149.2 (s, ArC-OH), 72.5 (t, OCH,), 31.7, 31.3 (d, ArCH2Ar), 15.1 (q, CH3); mass spectrum, m/e 

452.198 @I+, calcd 452.199). Anal. Calcd for C30H2s04*0.2CH,C12: C, 77.6; H, 6.12. Found: C, 77.7; H, 

5.84. 

2%Ethoxy-p-tert-butylcalix[4]arene (3b). Method A, eluent CHzClz/petroleum ether 1 : 1; mp 

206-208 OC (lit.” 200-201 OC (MeOH)). Method B; mp 200-201 “C (CH2C1#4eOH). 
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28-(2-Propenyloxy)calix[4]arene (4a). Method A, eluent CH$&/petroleum ether 1 : 1; mp 207-209 

OC (CHCl$MeOH) (lit.” 216-217 “C). 

Method B; the crystallized product contained some syn-1,3-disubstituted calix[4]amne that was 

removed via column chromatography (hexane/ethyl acetate 9 : 1); mp 205207 “C. 

28-(2.Propenyloxy)-p-kti-butykalix[4]arene (4b). Method A, eluent CH$$&%roleum ether 1 : 1; 

mp 273-275 OC (CHCl,/MeOH); ‘H NMR 6 10.17 (s, 1 H, OH), 9.50 (s, 2 H, OH), 7.10,7.04 (s, 2 H, ArH), 

7.05 and 6.98 (ABq, 4 H, J = 2.4 Hz, ArH). 6.55-6.35 (m, 1 H. =CH), 5.64 (d, 1 H, J = 17.2 Hz, =CHH), 5.51 

(d, 1 H, J = 10.2 Hz. =CHH), 4.67 (d, 2 H, J = 6.3 Hz, 0CH2), 4.37 (d, 2 H, J = 12.9 Hz, ArCHsAr ax), 4.27 

(d, 2 H, .I = 13.6 Hz, ArCHZAr ax), 3.43 (d, 4 H,.J = 13.4 Hz, ArCH2Ar eq), 1.22, 1.20 (s, 9 H, C(CH&), 1.21 

(s, 18 H, C(CH&); 13C NMR S 149.1 (s, ArC-OR,), 148.4, 147.8 (s, At-C-OH), 126.4 (d, =CH), 120.3 (t, 

=CH$, 77.6 0. OCH,), 34.2, 34.0, 33.9 (s, C(CH3)3), 33.0, 32.3 (t. ArCHzAr), 31.4, 31.2 (q, C(CH3)3); mass 

spectrum, m/e 688.448 (M+, calcd 688.449). Anal. Calcd for C47H6004*0.2CHC13: C, 79.8; H, 8.55. Found: C, 

79.7; H, 8.51. 

2-[(p-tert-Butylcalix[4]arene-2%yl)oxy]acetic acid, ethyl ester (5b). Method A, eluent CH2ClZ/ 

petroleum ether 3 : 1; mp 275-276 OC. 

Method B; mp 264-266 “C dec (CH$&/MeOH). 

‘H NMR 6 10.23 (s, 1 H, OH), 9.26 (s, 2 H, OH), 7.09, 7.05 (s, 2 H, ArH), 7.04, 6.98 (d, 2 H, J = 2.3 

Hz, ArH), 4.89 (s, 2 H, OCH,COOR), 4.48,4.30 (d, 2 H, J = 13.4 Hz, ArCHzAr ax), 4.41 (q, 2 H, J = 7.2 Hz, 

OCHz), 3.43 (d, 4 H. J = 13.4 Hz, ArCH2Ar eq), 1.41 (t, 3 H, J = 7.2 Hz, CH3), 1.23, 1.19 (s, 9 H, C(CH3)3), 

1.20 (s, 18 H, C(CH,),); 13C NMR 8 169.5 (s, C=O), 149.9 (s, Arc-ORr), 148.2 (s, Arc-OH), 72.0 (t, 

OCH$OOR), 61.9 (t, OCHzCHs), 34.2, 34.0, 33.9 (s, C(CH3)3), 33.0, 32.5 (ArCHzAr), 31.5, 31.4, 31.2 (q, 

C(CH3)3), 14.2 (9, CH3); mass spectrum, nrle 734.443 (M+, calcd 734.455). Anal. Calcd for 

C,tsH~20,*0.2CH2ClZ: C, 77.1; H, 8.37. Found: C, 76.7; H, 8.59. 

Acknowledgments. The research described in this paper was supported by the Netherlands Foundation 

for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research 

(NWO), and by the EEC Twinning Project ST2E0215. 

REFERENCES AND NOTES 

1. a) Gutsche, C. D. Cczlixurenes. Monographs in Supramolecular Chemistry, Vol. 1; Stoddart, F. J. Ed.; 

The Royal Society of Chemistry: Cambridge, 1989. b) Calixarenes, a Versatile Class of Macrocyclic 

Compounds; Vicens, J.; Biihmer, V. Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 

1991. 



L. C. GROENEN et al. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Until now an adequate nomenclature for the exact conformation of a calix[4]arene is missing. In this 

paper we use the prefix syn to indicate that two large 0-substituents (that cannot rotate through the 

annulus) ate on the same face of the molecule and the prefix anti when two large 0-substituents are on 

different faces of the molecule. The numbers l-4 indicate the four phenyl rings of the calix[4]atene in 

sequential order. The IUPAC name for the calix[4]arene moiety (la) is pentacyclo- 

[19.3.1.3~7.1g~13.115~1g]~tacosa-1(25),3,5,7(28),9,l1,13(27),15,17,19(26),21,23-dodecaene-25,26,27,28- 

tetraol. 

a) Collins, E. M.; McKervey, M. A.; Harris, S. J. J. Chem. Sot., Per&in Trans. I 1989, 372-374. b) van 

Loon, J.-D.; Arduini, A.; Coppi, L.; Verboom, W.; Pochini. A.; Ungaro, R.; Harkema. S.; Reinhoudt, D. 

N. J. Org. Chem. 1990,55,5639-5646. 

Groenen, L. C.; RuCl, B. H. M.; Casnati, A.; Timmerman, P.; Verboom, W.; Harkema, S.; Pochini, A.; 

Ungaro, R.; Reinhoudt, D. N. Terrahedron Lett. 1991,32,2675-2678. 

Iwamoto, K.; Yanagi, A.; Arimura, T.; Matsuda, T.; Shinkai, S. Chem. Len. 1990, 1901-1904. 

Groenen, L. C.; van Loon, J.-D.; Verboom, W.; Harkema, S.; Casnati, A.; Ungaro, R.; Pochini. A.; 

Ugozzoli, F.; Reinhoudt, D. N. J. Am. Chem. Sot. 1991,113,2385-2392. 

Iwamoto, K.; Yanagi, A.; A&i, K.; Shinkai, S. Chem. Left 1991,473-476. 

Araki, K.; Iwamoto, K.; Shinkai, S.; Matsuda, T. Bull. Chem. Sot. Jpn. 1990,63,3480-3485. 

Bottino, F.; Giunta, L.; Pappalardo, S. J. Org. Chem. 1989,54,5407-5409. 

Gutsche, C. D.; Lin, L.-G. Tetrahedron 1986.42, 1633-1640. 

Casnati, A.; Arduini, A.; Ghidini, E.; Pochini, A.; Ungaro. R. Tetrahedron 1991,47,2221-2228. 

a) Bohmer, V.; Schade, E.; Vogt, W. Makromol. Chem., Rapid Commun. 1984,5, 221-224. b) Shinkai, 

S.; Araki, K.; Koreishi, H.; Tsubaki, T.; Manabe, 0. Chem. Lerr. 1986, 1351-1354. c) Shinkai. S.; Araki, 

K.; Shibata, J.; Tsugawa, D.; Manabe, 0. Chem. Left 1989,931-934. 

For a review on the use of F as a base see: Clark, J. H. Chem. Rev. 1980,80,429-452. 

Gutsche, C. D.; Iqbal, M.; Stewart, D. J. Org. Chem. 1986,51,742-745. 


